Euclidean Distance between Haar Orthogonal and Gaussian Matrices

نویسندگان

  • CARLOS E. GONZÁLEZ-GUILLÉN
  • IGNACIO VILLANUEVA
چکیده

In this work we study a version of the general question of how well a Haar distributed orthogonal matrix can be approximated by a random gaussian matrix. Here, we consider a gaussian random matrix Yn of order n and apply to it the Gram-Schmidt orthonormalization procedure by columns to obtain a Haar distributed orthogonal matrix Un. If F m i denotes the vector formed by the first m-coordinates of the ith row of Yn − √ nUn and α = m n , our main result shows that the euclidean norm of F i converges exponentially fast to √ ( 2− 43 (1−(1−α)3/2) α ) m, up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm ǫn(m) = sup1≤i≤n,1≤j≤m |yi,j − √ nui,j | and we find a coupling that improves by a factor √ 2 the recently proved best known upper bound of ǫn(m). Applications of our results to Quantum Information Theory are also explained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased diversity space-time coding using the diversity transform

The paper presents a method for constructing space-time block codes for multiple-input multiple-output channels by concatenating orthogonal designs with the so-called diversity transform. Relying on unitary transforms, the diversity transform increases the channel alphabet without sacrificing information rate, bandwidth, or Euclidean distance. The distribution of the resulting channel alphabet ...

متن کامل

The Entries of Haar-invariant Matrices from the Classical Compact Groups

Let Γn = (γij)n×n be a random matrix with the Haar probability measure on the orthogonal group O(n), the unitary group U(n) or the symplectic group Sp(n). Given 1 ≤ m < n, a probability inequality for a distance between (γij)n×m and some mn independent F -valued normal random variables is obtained, where F = R, C or H (the set of real quaternions). The result is universal for the three cases. I...

متن کامل

Group average representations in Euclidean distance cones

The set of Euclidean distance matrices has a well-known representation as a convex cone. The problems of representing the group averages of K distance matrices are discussed, but not fully resolved, in the context of SMACOF, Generalized Orthogonal Procrustes Analysis and Individual Differences Scaling. The polar (or dual) cone representation, corresponding to inner-products around a centroid, i...

متن کامل

Extreme Gaps between Eigenvalues of Random Matrices

This paper studies the extreme gaps between eigenvalues of random matrices. We give the joint limiting law of the smallest gaps for Haar-distributed unitary matrices and matrices from the Gaussian Unitary Ensemble. In particular, the kth smallest gap, normalized by a factor n, has a limiting density proportional to x3k−1e−x 3 . Concerning the largest gaps, normalized by n/ √ logn, they converge...

متن کامل

Linear Functionals of Eigenvalues of Random Matrices

LetMn be a random n n unitary matrix with distribution given by Haar measure on the unitary group. Using explicit moment calculations, a general criterion is given for linear combinations of traces of powers of Mn to converge to a Gaussian limit as n ! 1. By Fourier analysis, this result leads to central limit theorems for the measure on the circle that places a unit mass at each of the eigenva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014